Caracterización química y nutricional de variedades de grano de amaranto y algunas aplicaciones

Resumen
Seis variedades de amaranto de grano (*Amaranthus cruentus*) producidos en Patulul, Suchitepéquez, fueron analizados químicamente y nutricionalmente tanto crudas como procesadas. Estos procesos fueron por cocción térmica en seco (120°C, 25 seg.), cocción húmeda (ebullición, 30 min), con energía eléctrica o por microondas (10 min), cocción alcalina (nixtamalización, 0.6% cal, 15 min), malteado (remojo, germinación y tostado leve), laminado y fermentado. El contenido de proteína de las variedades varió entre 14.7 y 16.0% y el de grasa entre 6.7 y 6.9%. El contenido de escualeno fue de 6 a 12% del aceite. Los procesos aplicados al grano indujeron pequeños aumentos en el contenido de proteína posiblemente debido al menor contenido de humedad en productos procesados. Las características fisicoquímicas de las harinas resultantes como el índice de absorción de agua, el de sólidos solubles, la sedimentación y viscosidad fueron afectadas por los procesos. El malteado indujo aumentos en el contenido proteico y de azúcares. Los procesos térmicos con excepción de la

Abstract
Six varieties of grain amaranth (*Amaranthus cruentus*) produced in Patulul, Suchitepéquez were chemically and nutritionally analyzed raw and processed. Processing included dry cooking (180°C 25 sec); wet cooking (boiling, 30 min) with electric energy or by microwave (10 min), alkaline cooking (nixtamalization, 0.6 % lime, 15 min), malting (soaking, germination and light roasting) flaking and fermentation. The protein content varied from 14.7 to 16.0% and ether extract varied from 6.7 to 6.9%. Squalene content varied between 6 – 12% of the oil. The processes applied to the grain induced small increases in protein content probably due to a lower moisture content in processed products. The physicochemical characteristics of the flours, such as water absorption, soluble solids, sedimentation and viscosity were affected by the various processes. Malting induced increases in protein content and of sugars. All thermal processes decreased protein quality slightly, with the exception of moist cooking and microwave cooking,
cocción húmeda y la cocción por microondas disminuyeron ligeramente la calidad proteica del grano. La proteína del amaranoto suplementa significativamente la proteína del trigo y la de la avena. En base a esto se iniciaron estudios del uso de 40% de harina de amaranoto con 60% de harina de trigo en la preparación de champurradas. No se observó un aumento en la calidad proteica de la champurrada con amaranoto posiblemente debido a una reducción de la lisina disponible. La calidad organo-léptica de las champurradas con amaranoto nixtamalizado a través de pruebas de preferencia por panelistas, con y sin remojo fueron en general mejores que las de la champurrada control. Asimismo, la bebida de avena (46%) y amaranoto (54%) presentó características nutricionales de interés.

Introducción

Históricamente, el grano de amaranoto es posiblemente junto al maíz, el grano que tiene su presencia en el continente americano cuatro mil o más años antes de Cristo. Los primeros en cultivarlo fueron los Maya y los Azteca y lo utilizaron en sus ceremonias religiosas que fueron abolidas por los conquistadores, logrando con eso una caída sustancial de su producción y utilización a pesar de sus grandes bondades nutricionales (25, 16, 19).

La familia **Amaranthaceae** comprende más de 60 géneros y 800 especies de plantas herbáceas anuales y perennes. El género **Amaranthus** tiene tres especies, el **A. hypochondriacus**, el **A. cruentus** cultivados en Mesoamérica (México y Guatemala) y el **A. caudatus** cultivado en Perú, y todas producen panojas llenas de una pequeña semilla. Además de las especies que producen grano, existen otras especies que ofrecen sus hojas (bledo) como verdura de alto valor nutritivo tanto por su contenido de proteína como de vitaminas y minerales (19).

Por su tolerancia a condiciones ambientales adversas, el grano de amaranoto tiene gran potencial para ser cultivado en varias regiones de Guatemala ofreciendo buenos rendimientos. La composición química y el valor nutritivo de las variedades de amaranoto cultivadas en Guatemala han sido ampliamente estudiados, y se han realizado estudios de producción en varias regiones del país con resultados aceptables.

which resulted in a small but consistent increase.

Amaranth grain protein significantly supplements wheat protein and that of oats. In view of this, studies were initiated on the use of 40% amaranth flour with 60% of wheat flour in the preparation of champurradas a popular cookie in Guatemala. An increase in protein quality as expected did not take place probably due to a reduction in available lysine during baking. The organoleptic quality of champurradas with nixtamalized amaranth with and without soaking was in general better than the 100% wheat flour champurrada. Likewise a drink of 46% oats and 54% amaranth showed nutritional attributes of interest.
Se han hecho estudios básicos sobre su composición química y valor nutritivo ya que se ha detectado el interés en su uso por varias organizaciones de alimentación infantil y ONGs (10, 11).

Su contenido proteínico que oscila entre un 14 a un 18% es de alta calidad por su alto contenido de aminoácidos esenciales en particular lisina (13, 7). Además, es un excelente complemento proteínico a los cereales como el maíz, sorgo, arroz y trigo. Asimismo, la proteína del amaranto se complementa con el frijol, leche, soya y avena (7, 8).

El amaranto contiene entre 5 – 8% de aceite con un atractivo balance de ácidos grasos saturados, semisaturados y poliinsaturados, considerado además como fuente vegetal rica en escualeno (3-5, 20).

Su contenido de fibra dietética se ha asociado con la regulación del colesterol (15, 14).

Algunas variedades son utilizadas como ingrediente alimentario ya que son ricas en amilopectina la cual le confiere un comportamiento especial a los alimentos (21).

Al grano de amaranto, se le pueden aplicar distintos procesos de cocción de los cuales el más utilizado es el proceso de expansión dando un producto que se puede consumir como tal o con miel o puede convertirse en harina para la preparación de otros alimentos (12, 7, 6, 9, 26, 29).

El proceso de microondas se ha ensayado con el objeto de evaluar su efectividad en cocinar cereales y leguminosas de grano (22, 18) y en otras aplicaciones como descongelado, secado y horneado (24). Estudios preliminares fueron llevados a cabo con la cocción del grano de amaranto por microondas, descritos más adelante, con resultados prometedores.

A pesar de las grandes bondades del grano de amaranto, tanto en su composición química como en su valor nutritivo, su uso en Guatemala es bajo. En algunas instituciones de beneficencia y en el área rural se utiliza en pequeñas cantidades. Un caso es la distribuidora Chikach (Fundación Centro de Servicios Cristianos y Distribuidora Chikach).

Las propiedades agronómicas y nutricionales del grano de amaranto, hacen que aume el interés por este grano en Guatemala, y su buena calidad nutritiva ayudaría en gran medida a resolver problemas de mala nutrición en la población infantil en el país. Sin embargo, por la falta de aplicaciones no se produce en grandes cantidades, por lo que los productos descritos en este artículo pueden darle la importancia que requiere dicho grano para su producción y utilización.
Materiales y Métodos

- **Materiales**

Gráfica 1.
Cultivo de amaranto intercalado al cultivo de maíz

Gráfica 2.
Cultivo de variedades de amaranto en floración
Métodos

- Proceso de cocción aplicada al grano de amaranto

Tratamiento del grano entero crudo: Una muestra de grano entero de amaranto (1.5 kg/tratamiento) fue lavada con una solución al 0.5% de bicarbonato de sodio y luego con agua destilada. Al grano tratado de esta manera, se le eliminó el agua superficial y se fue secando cuidadosamente en un horno de convección. Una vez seco, se aplicaron los procesos enunciados a continuación, obteniéndose los productos mostrados en la Gráfica 3.

Gráfica 3.
Productos de procesamiento del grano de amaranto

Cocción húmeda: consistió en cocinar el grano de amaranto en agua a ebullición por un período de 20-35 minutos. Luego el grano cocido sin agua se sometió a deshidratación en un horno con aire a 65°C. Una vez seco (10% humedad) el grano se molió para obtener harina de 80 mesh.

Cocción alcalina: el grano se expuso a ebullición por 30 minutos en una solución de cal al 0.6% (9). El producto cocido se lavó con agua para remover los residuos de cal, y luego fue secado y molido bajo las mismas condiciones que en la cocción húmeda.

Expansión: el grano se expandió poniéndolo en una superficie caliente (comal) por 20 – 30 segundos como máximo. Una vez expandido el grano se molió para dar harinas de 80 mesh (12).
Laminación: consistió en expandir el grano de amaranto como se indica en el párrafo anterior, y luego se pasó por un laminador para obtener un producto final en forma de hojuelas.

Malteado: el grano se dejó en remojo por 12 horas para luego ponerlo a germinar por no más de 24 horas. Al aparecer el brote de germinación, el grano se colocó en un horno a 60, 75 y 95°C por 1 hora a cada temperatura hasta secarlo y luego se molió.

Fermentación sumergida: el grano se cubrió con agua destilada dejándolo al ambiente hasta cuando se inició a notar la formación y desprendimiento de burbujas (2–3 días). Luego se separó el agua y el grano se deshidrató con aire caliente a 65°C y se molió.

Cocción por microondas: el grano fue puesto en remojo con agua. Luego la mitad fue cocida por microondas por 10 minutos mientras que a la otra mitad se le quitó el agua y luego se procesó por microondas como en el caso anterior (22). Los granos cocidos fueron molidos.

Análisis químico: para la evaluación química proximal se utilizaron los métodos oficiales de la AOAC (2).

Análisis biológico: la evaluación de la calidad nutritiva de la proteína tanto de las diferentes harinas de amaranto como de productos desarrollados se llevó a cabo por el método de NPR (Net Protein Ratio) o por el PER (Protein Efficiency Ratio) y la digestibilidad de la proteína de acuerdo a los métodos descritos en Nutritional Evaluation of Protein Foods (28). La composición de las dietas está descrita en la sección de resultados.

• Estudios sobre la utilización del grano de amaranto en alimento con cereales

Complementación proteínica entre las proteínas de la harina de trigo y la de amaranto.

Con el propósito de conocer el efecto de reemplazo de la proteína de la harina de trigo por la proteína de la harina de amaranto, o viceversa, se llevó a cabo un estudio de complementación proteica entre los dos ingredientes. Para la preparación de las dietas con un contenido fijo de 10% de proteína, esta se distribuyó entre los dos ingredientes en la proporción de 100/0, 80/20, 60/40, 40/60, 20/80 y 0/100. Estas mezclas apropiadamente suplementadas con minerales (4%),

1 Un método alternativo consiste en moler el amaranto cocido y hacer una masa con la cantidad suficiente de agua para después pasarlo por un laminador y obtener hojas de 0.1 mm de espesor.
vitaminas (1%) y aceite (5%), se ofrecieron a ocho ratas Wistar recién destetadas por dieta, por un período de 14 días, usando caseína como control en un NPR estandarizado, además, de una dieta aprotéica. El diseño experimental de esta evaluación indica si existe o no una complementación entre los dos ingredientes.

Elaboración de champurradas

A fin de evaluar la calidad proteínica de los productos finales de amaranto, se elaboraron champurradas tradicionales enriquecidas con harina de amaranto procesado en una proporción de 60% de harina de trigo y 40% de harina de amaranto en base al estudio anterior. Para el efecto se utilizaron dos variedades de amaranto de la misma especie (*Amaranthus cruentus*), la variedad Alegria Disciplinada y la variedad K-277. A las champurradas de la variedad Alegria Disciplinada, se le aplicaron los análisis químico y organoléptico, y a la champurrada de la segunda variedad se le aplicó además un estudio biológico (NPR) con ratas de laboratorio. Para la elaboración de champurradas, se seleccionó una receta tradicional Guatemalteca con la variante de sustituir 40% de la harina de trigo, por harina de amaranto. Se ha tomado como parámetro de control, las champurradas elaboradas con harina de trigo al 100%. La harina de trigo seleccionada es harina para todo uso. Las champurradas fueron elaboradas a mano y las características físicas se unificaron para tener parámetros de comparación entre procesos y entre variedades. Se prepararon champurradas de diámetro de 11 cm en promedio y 0.6 cm de grosor. Ver Gráfica 4. Las bolas crudas previas al horneo, alcanzaron un promedio de 45 g de peso y 4.5 cm de diámetro. El peso alcanzado de las champurradas horneadas fue de 35 g en promedio. El horneo se hizo en un horno de convección (Fisher Scientific Isotemp 500) a una temperatura de 365°F por 25 minutos.

Gráfica 4.
Champurrada 60%
harina de trigo y 40%
harina de grano de
amaranto
Evaluación organoléptica

Para los ensayos organolépticos, se realizó una prueba de preferencia (27) para establecer el nivel de preferencia en escala de 0 a 10 para las champurradas con amaranto. Se aplicaron dos pruebas para diferenciar las características organolépticas de las champurradas. La primera prueba consistió en evaluar el producto en base seca, es decir, la champurrada sin humedad adicional y la segunda prueba consistió en evaluar el producto en base húmeda, es decir, el producto terminado remojado en solución de café a 90°C por un periodo de 10 segundos.

Evaluación de la Calidad de la Proteína de la Champurrada

Champurradas preparadas de mezclas de 60% trigo y 40% amaranto (variedad K-277) fueron sometidas a una evaluación de calidad de proteína. La harina de amaranto fue preparada en crudo, nixtamalizado, hervido y reventada. Para el estudio se utilizaron ocho ratas recién destetadas de la raza Wistar por grupo. Se utilizaron como parámetros de control, una dieta de caseína como fuente de proteína y una dieta libre de nitrógeno.

- Estudio de la complementación entre las proteínas de la avena y el amaranto expandido

La avena contiene entre un 12 a un 12.6% de proteína, y resulta ser un cereal recomendado como fuente de proteína. Por ser la lisina el aminoácido limitante en avena, y por su alto contenido en metionina, la avena es ideal para combinarse con otro tipo de proteína proveniente de granos, legumbres y leche y obtener así, proteínas más completas como las de la carne, pescados y huevos. Uno de los granos que cumple esta característica de complementación por contener cantidades apreciables de lisina, es el grano de amaranto, que combinado con la avena logra en alguna medida extender este aminoácido en la avena, además de proporcionarle mayor textura y sabor. Para el estudio se elaboraron mezclas con distintas proporciones de avena-amaranto, como fuera explicado para el estudio trigo-amaranto, con el fin de establecer si existe un efecto complementario de las proteínas. Estas mismas proporciones, se utilizaron para la elaboración de dietas, utilizadas para el análisis biológico, y para proponer la fórmula de un atol nutritivo.
Resultados y Discusión

- Evaluación química del grano crudo y procesado de amaranto

La Tabla 1 muestra los resultados obtenidos al analizar químicamente el grano de amaranto molido sin procesar, en el que se observa un alto contenido en proteína y grasa, superior a los valores que se informan del maíz, arroz y de otros cereales. Los valores en estas seis variedades son similares a los informados anteriormente por otros autores. Las seis variedades cosechadas en el año 2005 fueron procesadas como fuera indicado en la sección de métodos y los productos obtenidos se analizaron por su contenido de proteína (Tabla 2). El contenido de proteína vario de 15.1 a 16.9% entre variedades de amaranto crudo y entre 15.2 a 19.2% con respecto a productos procesados. Las diferencias no fueron estadísticamente significativas. Los contenidos de proteína en los productos procesados fueron mayores al contenido promedio de los gramos en crudo probablemente debido a que las muestras procesadas contenían niveles más bajos de humedad.

Tabla 1

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Humedad, %</th>
<th>Carbohidratos, %</th>
<th>Proteína, %</th>
<th>Grasa, %</th>
<th>Cenizas, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-277</td>
<td>14.0 ± 0.91</td>
<td>59.5 ± 0.00</td>
<td>16.9 ± 0.26</td>
<td>6.5 ± 0.43</td>
<td>3.1 ± 0.01</td>
</tr>
<tr>
<td>D-70-1</td>
<td>11.0 ± 0.30</td>
<td>64.8 ± 0.00</td>
<td>15.7 ± 0.24</td>
<td>6.7 ± 0.69</td>
<td>2.3 ± 0.00</td>
</tr>
<tr>
<td>A-200-D</td>
<td>12.0 ± 1.34</td>
<td>64.6 ± 0.00</td>
<td>14.7 ± 0.86</td>
<td>6.8 ± 0.21</td>
<td>2.4 ± 0.00</td>
</tr>
<tr>
<td>Don Armando</td>
<td>11.0 ± 0.00</td>
<td>64.1 ± 0.00</td>
<td>15.8 ± 0.00</td>
<td>6.3 ± 0.18</td>
<td>2.4 ± 0.00</td>
</tr>
<tr>
<td>Alegria</td>
<td>12.0 ± 2.36</td>
<td>64.7 ± 0.00</td>
<td>16.2 ± 0.49</td>
<td>6.4 ± 0.04</td>
<td>2.7 ± 0.00</td>
</tr>
<tr>
<td>Discriminada</td>
<td>10.0 ± 0.22</td>
<td>65.1 ± 0.00</td>
<td>15.1 ± 0.00</td>
<td>6.9 ± 0.36</td>
<td>2.5 ± 0.00</td>
</tr>
</tbody>
</table>

Tabla 2

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Expandido, %</th>
<th>Cocción Húmeda, %</th>
<th>Cocción , % Alcalina,</th>
<th>Laminado, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-277</td>
<td>18.5 ± 0.04</td>
<td>15.2 ± 0.32</td>
<td>18.2 ± 0.21</td>
<td>16.9 ± 0.48</td>
</tr>
<tr>
<td>D-70-1</td>
<td>17.8 ± 0.61</td>
<td>17.2 ± 0.76</td>
<td>18.9 ± 1.18</td>
<td>17.2 ± 0.01</td>
</tr>
<tr>
<td>A-200-D</td>
<td>17.8 ± 0.01</td>
<td>18.2 ± 0.02</td>
<td>17.5 ± 0.16</td>
<td>16.9 ± 0.26</td>
</tr>
<tr>
<td>Don Armando</td>
<td>18.5 ± 0.21</td>
<td>19.2 ± 0.38</td>
<td>16.9 ± 0.48</td>
<td>16.9 ± 0.03</td>
</tr>
<tr>
<td>Alegria</td>
<td>18.3 ± 0.25</td>
<td>18.3 ± 0.51</td>
<td>17.7 ± 1.21</td>
<td>17.3 ± 0.39</td>
</tr>
<tr>
<td>Discriminada</td>
<td>18.0 ± 0.11</td>
<td>17.6 ± 0.24</td>
<td>17.1 ± 0.70</td>
<td>16.7 ± 0.08</td>
</tr>
</tbody>
</table>
Las variedades cosechadas en Enero 2005, (sólo cinco del total de seis) fueron fermentadas y malteadas como ya fuera descrito y se analizaron por su contenido de proteína, grasa y carbohidratos, los resultados obtenidos se muestran en la Tabla 3.

Tabla 3

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Proceso</th>
<th>Humedad</th>
<th>Proteína</th>
<th>Grasa</th>
<th>Carbohidratos</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-277</td>
<td>Cruda</td>
<td>11.61 ± 1.47</td>
<td>14.38 ± 0.01</td>
<td>6.85 ± 0</td>
<td>54.9</td>
</tr>
<tr>
<td></td>
<td>Fermentado</td>
<td>3.88 ± 0.11</td>
<td>15.53 ± 0.01</td>
<td>6.14 ± 0</td>
<td>71.5</td>
</tr>
<tr>
<td></td>
<td>Malteado</td>
<td>2.55 ± 0.06</td>
<td>18.35 ± 0.02</td>
<td>5.83 ± 0</td>
<td>69.7</td>
</tr>
<tr>
<td>D-70-1</td>
<td>Cruda</td>
<td>10.82 ± 1.51</td>
<td>13.94 ± 0.18</td>
<td>7.15 ± 0</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td>Fermentado</td>
<td>4.00 ± 0.07</td>
<td>14.14 ± 0.10</td>
<td>7.36 ± 0</td>
<td>72.1</td>
</tr>
<tr>
<td></td>
<td>Malteado</td>
<td>4.03 ± 0.02</td>
<td>20.80 ± 0.01</td>
<td>6.74 ± 0</td>
<td>64.6</td>
</tr>
<tr>
<td>A-200-D</td>
<td>Cruda</td>
<td>7.80 ± 0.50</td>
<td>14.04 ± 0.15</td>
<td>7.28 ± 0</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>Fermentado</td>
<td>4.86 ± 0.13</td>
<td>14.29 ± 0.20</td>
<td>5.04 ± 0</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td>Malteado</td>
<td>2.53 ± 0.02</td>
<td>18.45 ± 1.00</td>
<td>9.19 ± 0</td>
<td>66.8</td>
</tr>
<tr>
<td>Don Armando</td>
<td>Cruda</td>
<td>11.55 ± 1.30</td>
<td>13.62 ± 0.05</td>
<td>9.50 ± 0</td>
<td>51.94</td>
</tr>
<tr>
<td></td>
<td>Fermentado</td>
<td>1.50 ± 0.02</td>
<td>14.17 ± 0.20</td>
<td>7.39 ± 0</td>
<td>74.39</td>
</tr>
<tr>
<td></td>
<td>Malteado</td>
<td>2.36 ± 0.04</td>
<td>18.11 ± 0.13</td>
<td>6.74 ± 0</td>
<td>69.52</td>
</tr>
<tr>
<td>Montana</td>
<td>Cruda</td>
<td>10.45 ± 2.0</td>
<td>13.94 ± 0.50</td>
<td>9.55 ± 0</td>
<td>52.56</td>
</tr>
<tr>
<td></td>
<td>Fermentado</td>
<td>4.95 ± 0.01</td>
<td>12.42 ± 0.57</td>
<td>7.96 ± 0</td>
<td>71.69</td>
</tr>
<tr>
<td></td>
<td>Malteado</td>
<td>3.08 ± 0.03</td>
<td>17.35 ± 0.21</td>
<td>7.29 ± 0</td>
<td>67.72</td>
</tr>
</tbody>
</table>

De los datos en la tabla se nota que el malteo incrementó el contenido de proteína y el de carbohidratos, aunque para este último, no tanto como el amaranto fermentado anaeróbicamente. Se considera de interés estudiar estos procesos más en detalle para apreciar el significado de los cambios, tanto en características químicas y funcionales como de propiedades organolépticas.
• Efecto del procesamiento sobre la calidad de la proteína del amaranto

Es un hecho bien documentado que la aplicación de altas temperaturas por largos tiempos pueden reducir significativamente la calidad de las proteínas, a través de una reducción en la lisina disponible principalmente. Por el contrario la aplicación controlada de altas temperaturas puede ser de beneficio a la calidad de la proteína destruyendo factores antifisiológicos. En base a lo anterior fue de interés evaluar el efecto de los diferentes procesos sobre la calidad de la proteína y para tal fin se utilizó la variedad Alegria Disciplinada, en crudo, cocido en agua, nixtamalizado y expandido, en un estudio. En otro se evaluó la cocción por microondas. Para el estudio de los efectos de varios procesos se prepararon dietas con la variedad Alegria Disciplinada en las cuales la harina aportaba 10% de proteína y se usó caseína como proteína de referencia. El método utilizado fue el NPR (28). Se utilizaron 8 ratas recién destetadas por tratamiento y alimentadas adlibitum por un período de 14 días y los resultados se presentan en la Tabla 4.

Tabla 4

Calidad de la proteína de la variedad de amaranto Alegria Disciplinada sometida a varios procesos térmicos

<table>
<thead>
<tr>
<th>Proceso</th>
<th>% Proteína en Dieta</th>
<th>Aumento en Peso, g</th>
<th>Alimento Consumido, g</th>
<th>Eficiencia Alimenticia*</th>
<th>NPR**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>11.91 ± 0.19</td>
<td>32 ± 3.9</td>
<td>120 ± 0.9</td>
<td>0.29 ± 0.02</td>
<td>3.20 ± 0.25</td>
</tr>
<tr>
<td>Cocido</td>
<td>10.42 ± 0.02</td>
<td>70 ± 9.8</td>
<td>181 ± 6.2</td>
<td>0.39 ± 0.04</td>
<td>4.54 ± 0.99</td>
</tr>
<tr>
<td>Nixtamalizado</td>
<td>10.70 ± 0.18</td>
<td>46 ± 6.3</td>
<td>159 ± 2.9</td>
<td>0.29 ± 0.08</td>
<td>3.33 ± 0.79</td>
</tr>
<tr>
<td>Expandido</td>
<td>10.27 ± 0.10</td>
<td>49 ± 2.0</td>
<td>170 ± 10.5</td>
<td>0.28 ± 0.02</td>
<td>3.28 ± 0.21</td>
</tr>
<tr>
<td>Caseína</td>
<td>10.50 ± 0.10</td>
<td>61 ± 3.7</td>
<td>178 ± 7.0</td>
<td>0.35 ± 0.02</td>
<td>3.90 ± 0.22</td>
</tr>
</tbody>
</table>

* Aumento en peso/alimento consumido

** (Aumento en peso + pérdida en peso grupo proteico)/proteína ingerida.

Como se puede observar en la tabla, los productos procesados tienen una calidad proteínica igual o superior a la semilla cruda, en particular el material cocido con agua. Este efecto ya se había informado en otros estudios (12). Lo importante también es que el nixtamalizado y el expandido no redujeron la calidad proteínica del amaranto.
• Procesamiento del amaranto por cocción con microondas

Para estos propósitos se utilizó una mezcla de las variedades del estudio (A. cruentus). Con base en los resultados experimentales de cocción con microondas se estableció que un tiempo de remojo del grano era necesario. Lotes de 1360 g cada uno se dejaron en agua por 3 h de remojo a temperatura ambiente. Una muestra se deshidrato (cruda). Una segunda muestra se sometió a cocción en agua a 90°C por 10 minutos. Luego se deshidrato. La tercera muestra fue procesada igual que la anterior pero la cocción con microondas por 10 minutos se hizo solo en el grano húmedo. Una cuarta muestra se procesó como la anterior con la diferencia que la cocción con microondas se hizo en el amaranto con su agua de remojo. Todas las muestras deshidratadas se molieron y se prepararon dietas al 10% de proteína utilizando 62.5% de harina, 4% de sales minerales, 5% de aceite vegetal, 1% de mezcla vitamínica ajustando a 100% con almidón de maíz. Se utilizó una dieta de caseína al 10% de proteína para fines de control. El estudio se realizó usando ocho ratas recién destetadas alimentadas ad libitum por un período de 14 días. Los datos biológicos se detallan en la Tabla 5.

Tabla 5

Valor proteico de amaranto crudo, cocido en agua y por microondas

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Aumento en Peso, g</th>
<th>Alimento Ingerido, g</th>
<th>NPR</th>
<th>Valor Proteico % Caseína</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranto crudo</td>
<td>33 ± 6.0</td>
<td>131 ± 16.6</td>
<td>3.36 ± 0.75</td>
<td>82.1</td>
</tr>
<tr>
<td>A. cocido en hornilla</td>
<td>54 ± 7.9</td>
<td>165 ± 18.8</td>
<td>3.63 ± 0.16</td>
<td>88.7</td>
</tr>
<tr>
<td>A. cocido por microondas sin agua</td>
<td>54 ± 7.2</td>
<td>168 ± 11.3</td>
<td>3.91 ± 0.25</td>
<td>95.6</td>
</tr>
<tr>
<td>A. cocido por microondas en agua</td>
<td>53 ± 4.9</td>
<td>167 ± 9.2</td>
<td>3.47 ± 0.24</td>
<td>84.8</td>
</tr>
<tr>
<td>Caseína</td>
<td>54 ± 9.1</td>
<td>167 ± 16.4</td>
<td>4.09 ± 0.38</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Los resultados indican que la cocción con microondas es tan efectiva como la cocción común usando fuentes de energía convencional en mejorar la calidad proteínica del grano de amaranto, reflejado tanto en el aumento en peso como en el NPR. Como ya se había indicado anteriormente el grano crudo de amaranto no refleja el alto valor nutritivo de su proteína por factores aun todavía no bien identificados que podrían ser inhibidores enzimáticos o sencillamente una baja digestibilidad de los carbohidratos.
• Valor proteico de mezclas de harina de trigo con harina de amaranto

Para estos estudios se procedió a evaluar el efecto complementario entre las proteínas de trigo y las del grano de amaranto. Para tal propósito se prepararon mezclas de los dos ingredientes distribuyendo un 10% de proteína proporcionalmente entre las dos harinas. De esta manera las mezclas a evaluar contenían por peso harina de trigo/harina de amaranto en las siguientes cantidades 90/0, 73/13, 54/27, 36/40, 18/53 y 0/67. Estas combinaciones dieron 10.8, 9.9, 10.2, 10.4, 10.3 y 10.3 % de proteína respectivamente en dietas que además de la mezcla de harinas contenían 5% de aceite vegetal, 4% de mezcla mineral, 1% de mezcla vitamínica completa. Si fuera necesario, las dietas se ajustaron a 100% con almidón de maíz. La calidad proteica utilizó caseína como proteína de referencia al 10% de proteína, y consistió en un PER llevado a cabo por 28 días. Se utilizaron ocho ratas Wistar destetadas por grupo y se alimentaron adlibitum. El PER se estableció por el aumento en peso por unidad de proteína consumida. Los resultados se muestran en la Tabla 6.

<table>
<thead>
<tr>
<th>Mezcla de Harina de Trigo</th>
<th>Aumento en Peso, g</th>
<th>Alimento Ingerido, g</th>
<th>PER</th>
<th>Valor Proteico, % Caseína</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0</td>
<td>25 ± 4.9</td>
<td>248 ± 39.5</td>
<td>0.94</td>
</tr>
<tr>
<td>73</td>
<td>13</td>
<td>40 ± 4.2</td>
<td>303 ± 31.3</td>
<td>1.34</td>
</tr>
<tr>
<td>54</td>
<td>27</td>
<td>59 ± 7.7</td>
<td>334 ± 35.3</td>
<td>1.74</td>
</tr>
<tr>
<td>36</td>
<td>40</td>
<td>87 ± 23.0</td>
<td>369 ± 62.8</td>
<td>2.28</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>117 ± 18.3</td>
<td>303 ± 31.3</td>
<td>2.65</td>
</tr>
<tr>
<td>0</td>
<td>67</td>
<td>114 ± 17.7</td>
<td>407 ± 32.4</td>
<td>2.72</td>
</tr>
<tr>
<td>Caseína</td>
<td>119 ± 10.2</td>
<td>416 ± 26.0</td>
<td>2.96</td>
<td>100</td>
</tr>
</tbody>
</table>

Los datos de este estudio indican que existe una relación directa entre el nivel de amaranto en la dieta y la calidad de la proteína, o sea que la proteína del amaranto esta suplementando a la proteína de la harina de trigo muy posiblemente porque la primera es rica en su contenido de lisina en comparación con la harina de trigo.
• Productos elaborados a base de harina de amaranto

Champurradas

Un producto que es de alta aceptabilidad son las galletas y entre ellas podría considerarse la galleta conocida como Champurrada en Guatemala. Este alimento y las modificaciones que se le hicieron con harina de amaranto se muestran en la Tabla 7.

<table>
<thead>
<tr>
<th>Tabla 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición de ingredientes de la champurrada control y de dos modificaciones con harina de amaranto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Control</th>
<th>%</th>
<th>Alegria a Disciplinada</th>
<th>%</th>
<th>K-277</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harina de trigo</td>
<td>100 g</td>
<td>40.6</td>
<td>60</td>
<td>24.4</td>
<td>60</td>
<td>26.3</td>
</tr>
<tr>
<td>Harina de amaranto</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>16.3</td>
<td>40</td>
<td>17.5</td>
</tr>
<tr>
<td>Grasa</td>
<td>21</td>
<td>8.5</td>
<td>21</td>
<td>8.5</td>
<td>25</td>
<td>11.0</td>
</tr>
<tr>
<td>Levadura</td>
<td>2</td>
<td>0.8</td>
<td>2</td>
<td>0.8</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Azúcar</td>
<td>43</td>
<td>17.5</td>
<td>43</td>
<td>17.5</td>
<td>45</td>
<td>19.7</td>
</tr>
<tr>
<td>Agua</td>
<td>80 ml</td>
<td>32.5</td>
<td>80 ml</td>
<td>32.5</td>
<td>56</td>
<td>24.6</td>
</tr>
</tbody>
</table>

La relación trigo/amaranto en las dos formulaciones probadas fue 60/40, con un valor proteínico teórico de 65 – 68% del valor de caseína. Para el estudio se utilizaron las variedades Alegria Disciplinada y K-277. A las harinas procesadas de la variedad Alegria Disciplinada, se le aplicaron los análisis químicos, físicos y organolépticos y a la segunda variedad (K-277) se le aplicaron el estudio químico y biológico con ratas de laboratorio.

La Tabla 8 y 9 resume los datos químicos de las champurradas preparadas de las dos variedades de amaranto de diferentes procesos.
Tabla 8

Análisis químico proximal de champurradas de amaranto procesado (Variedad K-277)

<table>
<thead>
<tr>
<th>Muestra/Champurrada</th>
<th>Grasa, %</th>
<th>Proteína, %</th>
<th>Humedad, %</th>
<th>Cenizas, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control*</td>
<td>11.4 ± 0.00</td>
<td>9.6 ± 0.58</td>
<td>2.1 ± 0.06</td>
<td>1.4 ± 0.05</td>
</tr>
<tr>
<td>Amaranto crudo</td>
<td>12.8 ± 0.11</td>
<td>9.3 ± 0.22</td>
<td>2.8 ± 0.06</td>
<td>1.9 ± 0.08</td>
</tr>
<tr>
<td>Amaranto nixtamalizado</td>
<td>12.5 ± 0.00</td>
<td>8.9 ± 0.11</td>
<td>2.9 ± 0.05</td>
<td>2.8 ± 0.05</td>
</tr>
<tr>
<td>Amaranto hervido</td>
<td>11.9 ± 0.00</td>
<td>9.4 ± 0.49</td>
<td>3.2 ± 0.05</td>
<td>2.1 ± 0.03</td>
</tr>
<tr>
<td>A. reventado</td>
<td>11.9 ± 0.00</td>
<td>9.6 ± 0.15</td>
<td>2.9 ± 0.01</td>
<td>2.1 ± 0.04</td>
</tr>
</tbody>
</table>

* Champurrada control, sin adición de harina de amaranto.

Tabla 9

Análisis de champurradas de amaranto procesado (Variedad Alegria Disciplinada)

<table>
<thead>
<tr>
<th>Muestra*</th>
<th>Proteína %</th>
<th>Grasa %</th>
<th>CHO %</th>
<th>Humedad %</th>
<th>Fibra %</th>
<th>Cenizas %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>11.8 ± 0.24</td>
<td>13.6 ± 1.54</td>
<td>67.7 ± 0.00</td>
<td>4.4 ± 0.09</td>
<td>0.9 ± 0.01</td>
<td>1.5 ± 0.01</td>
</tr>
<tr>
<td>A. crudo</td>
<td>12.1 ± 0.28</td>
<td>12.9 ± 0.96</td>
<td>66.9 ± 0.00</td>
<td>5.1 ± 0.02</td>
<td>1.0 ± 0.00</td>
<td>1.9 ± 0.02</td>
</tr>
<tr>
<td>Amaranto cocido/cal</td>
<td>11.4 ± 0.36</td>
<td>14.7 ± 0.72</td>
<td>67.2 ± 0.00</td>
<td>3.8 ± 0.09</td>
<td>1.1 ± 0.04</td>
<td>1.9 ± 0.01</td>
</tr>
<tr>
<td>Amaranto cocido</td>
<td>11.7 ± 0.10</td>
<td>11.5 ± 0.01</td>
<td>70.5 ± 0.00</td>
<td>3.9 ± 0.08</td>
<td>0.9 ± 0.00</td>
<td>1.4 ± 0.11</td>
</tr>
<tr>
<td>Amaranto expandido</td>
<td>11.5 ± 0.30</td>
<td>13.4 ± 1.35</td>
<td>68.9 ± 0.00</td>
<td>3.5 ± 0.05</td>
<td>1.2 ± 0.01</td>
<td>1.6 ± 0.01</td>
</tr>
</tbody>
</table>

El contenido de proteína es más alto en las champurradas de la variedad Alegria Disciplinada que para la K-277 y en promedio tienen un poco más de grasa.
• Evaluación sensorial en champurradas de amaranto (Variedad Alegria Disciplinada y K-277)

Para la evaluación sensorial se utilizaron pruebas de preferencia realizadas por panelistas. Las champurradas fueron evaluadas por los panelistas sin ser remojadas y remojadas en café caliente (a una temperatura de 80°C).

En ambos casos se les pidió que hicieran una evaluación en escala de 0 a 10 en cuanto a sabor, aroma, apariencia, color y textura. Los resultados se presentan en la Tabla 10. En cuanto a sabor, apariencia, aroma y color se encuentran en valores de 6 a 9 en casi todas las champurradas, excepto en aquellas preparadas con amaranto crudo y expandido que reportaron valores promedio de 6. En cuanto a la textura, los datos obtenidos resultan ser más variados, debido a que la resistencia física de la champurrada a romperse es alta en comparación a la champurrada tradicional que no lleva amaranto, excepto en la champurrada con harina de amaranto de cocción húmeda y de expandido los cuales reportaron valores de 9 y 7 respectivamente, posiblemente debido al nivel de gelatinización de los almidones, no permitiendo mucha absorción de agua (café). La evaluación en champurradas humedecidas fue similar.

Tabla 10

Evaluaciones de preferencia para muestras de champurrada con amaranto en seco y húmedo

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Sabor</th>
<th>Aroma</th>
<th>Apariencia</th>
<th>Color</th>
<th>Textura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>H</td>
<td>S</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>Harina de trigo</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>+ Amaranto crudo</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>+ Amaranto cocido</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>+ Amaranto cocido/cal</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>+ Amaranto expandido</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

S= en seco
H= en húmedo

• Calidad de la proteína de las champurradas con harinas procesadas con amaranto (Variedad K-277)

Para la realización de este estudio, se elaboraron dietas para alimentar a ratas de laboratorio a base de champurradas de amaranto (Variedad K-277) tratado con diferentes procesos de cocción, a fin de determinar la calidad proteínica de este producto. Las dietas contenían 90.0% de la champurrada molida y suplementos de minerales (4.0%), de aceite (5%) y de mezcla vitamínica (1%). Además se uso
una dieta de caseína al 10% de proteína (11% de caseína) como control y una dieta aropeica para fines de corregir por pérdidas endógenas de proteína. Las ratas en estas dietas aumentaron muy poco en peso (Tabla 11) aún habiendo ingerido el alimento, lo cual sugirió que el proceso de horneo de la champurrada posiblemente redujo la biodisponibilidad de la lisina. Así mismo, el consumo de dieta se vio afectado por el nivel de aceite en la dieta que fue alta (5% agregado mas el aceite aportado por la galleta ±10%) y por el nivel de la proteína que fue bajo. La digestibilidad de la proteína de las champurradas mostrada en la Tabla 11 dio valores bajos en comparación con la de trigo.

Tabla 11

Aumento en peso de las ratas consumiendo dietas de champurradas con harinas de amaranto procesado

<table>
<thead>
<tr>
<th>Champurrada</th>
<th>Aumento en Peso, 14 días, g</th>
<th>Digestibilidad, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (C)</td>
<td>1.4 ± 1.6</td>
<td>83.8 ± 3.4</td>
</tr>
<tr>
<td>C + Amaranto crudo</td>
<td>3.9 ± 1.2</td>
<td>77.6 ± 0.9</td>
</tr>
<tr>
<td>C + Amaranto nixtamalizado</td>
<td>1.8 ± 1.9</td>
<td>73.4 ± 13.9</td>
</tr>
<tr>
<td>C + Amaranto cocido</td>
<td>2.9 ± 1.0</td>
<td>68.2 ± 9.2</td>
</tr>
<tr>
<td>C + Amaranto reventado</td>
<td>0</td>
<td>65.8 ± 4.8</td>
</tr>
<tr>
<td>Caseína</td>
<td>63 ± 8.7</td>
<td>92.3 ± 11.1</td>
</tr>
</tbody>
</table>

Para demostrar que la respuesta animal observada fue debido al bajo nivel de proteína y a la posible destrucción de lisina, a las dietas, se les adicionó 3% de caseína lo cual aportó 2.7 g/100 g mas de proteína, y una cantidad adicional de lisina. La Tabla 12 muestra la respuesta biológica inducida por la adición de caseína. Es de interés indicar que el orden de calidad de proteína fue el mismo sin y con el agregado de caseína. Es muy importante realizar estudios más controlados con respecto al horneo de los productos estudiados. Así mismo se considera que es mejor no usar harinas de amaranto que ya ha sido procesado a menos que el proceso utilizado no afecte la calidad nutriciva del amaranto. En el presente caso las harinas nixtamalizadas y reventadas ya han sido objetivo en la calidad por el proceso primario mientras que las crudas y las hervidas mantienen o mejoran su calidad por el proceso.
Tabla 12
Aumento en peso en ratas y NPR en dietas elaboradas con champurradas de amaranto (Variedad K-277) a 24 días de alimentación

<table>
<thead>
<tr>
<th>Dieta/Champurrada</th>
<th>Aumento en Peso, g</th>
<th>Alimentos Ingerido, g</th>
<th>NPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19 ± 6.5</td>
<td>79 ± 10.8</td>
<td>2.16 ± 0.54</td>
</tr>
<tr>
<td>Amaranto crudo</td>
<td>28 ± 4.3</td>
<td>98 ± 8.4</td>
<td>2.42 ± 0.22</td>
</tr>
<tr>
<td>Amaranto nixtamalizado</td>
<td>23 ± 3.2</td>
<td>91 ± 13.5</td>
<td>2.06 ± 0.23</td>
</tr>
<tr>
<td>Amaranto hervido</td>
<td>25 ± 2.7</td>
<td>94 ± 19.0</td>
<td>2.48 ± 0.19</td>
</tr>
<tr>
<td>Amaranto reventado</td>
<td>22 ± 1.5</td>
<td>86 ± 9.0</td>
<td>2.20 ± 0.22</td>
</tr>
<tr>
<td>Caseína</td>
<td>50 ± 12.2</td>
<td>162 ± 14.9</td>
<td>2.33 ± 0.56</td>
</tr>
</tbody>
</table>

- Complementación entre las proteínas de la avena laminada y el amaranto expandido (Variedad Alegria Disciplinada)

El déficit de aminoácidos esenciales tales como la lisina y la treonina en la avena y su alto contenido en metionina, hace ideal a la avena para combinarse con otro tipo de proteína proveniente de otros alimentos tales como el amaranto, que se caracteriza por su alto contenido en lisina. Las relaciones base avena-amaranto utilizadas para este estudio se basan en el contenido proteico tanto de la avena como del amaranto. En esta ocasión un nivel de 10% de proteína fue distribuido entre la avena y el amaranto para dar mezclas cuya composición química proximal se describe en la Tabla 13. Las proporciones obtenidas de avena-amaranto fueron de 100/0, 84/16, 66/34, 46/54, 25/75 y 0/100. Estas mezclas contendrían alrededor de 11.5% de proteína y 6.1% de grasa. Estas mezclas fueron ofrecidas a grupos de ratas para evaluar su calidad proteínica a través del método de NPR. Los resultados se muestran en la Tabla 14. El valor proteico más alto así como el mayor aumento en peso fue observado en la mezcla 32 partes de avena y 37 partes de amaranto que corresponde a una bebida de 46% avena y 54% amaranto con un valor del 89% del valor de caseína. En base a la respuesta observada se puede decir que la calidad de la proteína del amaranto es igual o muy similar a la proteína de la avena. La mezcla propuesta de 46% de avena y 54% de amaranto puede ser mejor nutricionalmente con el agregado de un 10% de harina de soya (50% de proteína) o un 20% de leche descremada para que de esa manera llegue a contener no menos de 15% de proteína. Las fórmulas serían de 38% de avena, 45% de amaranto y 17% de leche descremada o 42% de avena, 49% de amaranto y 9% de harina de soya.
Tabla 13

Composición en harina para atoles avena-amaranto

<table>
<thead>
<tr>
<th>Muestras, g</th>
<th>Proteína, %</th>
<th>Grasa, %</th>
<th>Carbohidratos Totales, %</th>
<th>Humedad, %</th>
<th>Cenizas, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avena</td>
<td>Amaranto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>0</td>
<td>11.1 ± 0.64</td>
<td>6.1 ± 0.00</td>
<td>75.8 ± 0.77</td>
<td>5.4 ± 0.07</td>
</tr>
<tr>
<td>63</td>
<td>12</td>
<td>11.5 ± 0.29</td>
<td>6.3 ± 0.00</td>
<td>74.9 ± 0.09</td>
<td>5.4 ± 0.17</td>
</tr>
<tr>
<td>48</td>
<td>25</td>
<td>11.8 ± 0.33</td>
<td>6.0 ± 0.00</td>
<td>74.9 ± 1.08</td>
<td>4.6 ± 0.69</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>12.0 ± 0.02</td>
<td>6.1 ± 0.00</td>
<td>75.2 ± 0.28</td>
<td>4.7 ± 0.31</td>
</tr>
<tr>
<td>16</td>
<td>49</td>
<td>12.0 ± 0.02</td>
<td>6.1 ± 0.00</td>
<td>75.2 ± 0.28</td>
<td>4.7 ± 0.31</td>
</tr>
<tr>
<td>0</td>
<td>62</td>
<td>12.1 ± 0.37</td>
<td>5.9 ± 0.00</td>
<td>75.9 ± 0.38</td>
<td>3.9 ± 0.02</td>
</tr>
</tbody>
</table>

Tabla 14

Valores de NPR como resultado del estudio biológico de mezclas a base de avena-amaranto

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Aumento en Peso, g</th>
<th>Alimentos Ingerido, g</th>
<th>NPR, %</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvenaAmaranto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>0</td>
<td>45 ± 5.8</td>
<td>158 ± 13.9</td>
<td>3.4 ± 0.22</td>
</tr>
<tr>
<td>63</td>
<td>12</td>
<td>51 ± 6.5</td>
<td>184 ± 11.7</td>
<td>3.2 ± 0.42</td>
</tr>
<tr>
<td>48</td>
<td>25</td>
<td>48 ± 9.7</td>
<td>164 ± 12.9</td>
<td>3.1 ± 0.37</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>55 ± 6.2</td>
<td>176 ± 16.6</td>
<td>3.4 ± 0.23</td>
</tr>
<tr>
<td>16</td>
<td>49</td>
<td>48 ± 6.6</td>
<td>173 ± 12.7</td>
<td>3.0 ± 0.21</td>
</tr>
<tr>
<td>0</td>
<td>62</td>
<td>48 ± 5.5</td>
<td>162 ± 10.3</td>
<td>3.2 ± 0.24</td>
</tr>
<tr>
<td>Caseína</td>
<td></td>
<td>67 ± 11.6</td>
<td>187 ± 16.7</td>
<td>3.8 ± 0.35</td>
</tr>
</tbody>
</table>
Bibliografía

2. AOAC, Official Methods of Analysis. 14Ed. 1984

